login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325812
Numbers k such that gcd(A034448(k)-k, k-A048146(k)) is equal to abs(k-A048146(k)).
4
1, 6, 12, 28, 56, 60, 108, 120, 132, 168, 264, 280, 312, 408, 420, 440, 456, 496, 528, 540, 552, 696, 700, 728, 744, 756, 760, 888, 984, 992, 1032, 1128, 1140, 1188, 1272, 1404, 1416, 1456, 1464, 1608, 1704, 1710, 1752, 1836, 1896, 1992, 2052, 2136, 2328, 2424, 2472, 2484, 2568, 2616, 2646, 2712, 3048, 3132, 3144, 3288, 3336, 3344
OFFSET
1,2
COMMENTS
Numbers k for which A325813(k) is equal to abs(A325814(k)).
Numbers k such that A325814(k) is not zero (not in A064591) and divides A034460(k).
Conjecture: after the initial one all other terms are even. If this holds then there are no odd perfect numbers.
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A034460(n) = (A034448(n) - n);
A048146(n) = (sigma(n)-A034448(n));
A325814(n) = (n-A048146(n));
A325813(n) = gcd(A034460(n), A325814(n));
isA325812(n) = (A325813(n)==abs(A325814(n)));
\\ Alternatively:
isA325812(n) = (A325814(n) && !(A034460(n)%A325814(n)));
CROSSREFS
Cf. A000396 (a subsequence).
Sequence in context: A068412 A183026 A146005 * A323652 A375235 A223346
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 23 2019
STATUS
approved