login
A325810
Lexicographically earliest sequence such that a(i) = a(j) => A034460(i) = A034460(j) and A325814(i) = A325814(j) for all i, j.
2
1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 35, 2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 45, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A034460(n), A325814(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A033879(i) = A033879(j),
a(i) = a(j) => A325811(i) = A325811(j) => A325813(i) = A325813(i).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A034460(n) = (A034448(n) - n);
A048146(n) = (sigma(n)-A034448(n));
A325814(n) = (n-A048146(n));
v325810 = rgs_transform(vector(up_to, n, [A034460(n), A325814(n)]));
A325810(n) = v325810[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 23 2019
STATUS
approved