login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325807
Number of ways to partition the divisors of n into complementary subsets x and y for which gcd(n-Sum(x), n-Sum(y)) = 1. (Here only distinct unordered pairs of such subsets are counted.)
7
1, 2, 1, 4, 1, 1, 1, 8, 3, 4, 1, 16, 1, 4, 2, 16, 1, 16, 1, 16, 4, 4, 1, 40, 3, 3, 4, 1, 1, 40, 1, 32, 2, 4, 4, 244, 1, 4, 4, 48, 1, 40, 1, 16, 8, 3, 1, 220, 3, 27, 2, 10, 1, 32, 4, 64, 4, 4, 1, 672, 1, 4, 14, 64, 4, 40, 1, 13, 2, 64, 1, 1205, 1, 4, 16, 10, 4, 40, 1, 236, 15, 4, 1, 864, 4, 3, 2, 64, 1, 640, 2, 16, 4, 4, 2, 537, 1, 26, 8, 241, 1, 40, 1, 64, 40
OFFSET
1,2
LINKS
FORMULA
For all n >= 1:
a(n) <= A100577(n).
a(A065091(n)) = 1, a(A000396(n)) = 1.
a(A228058(n)) = A325809(n).
EXAMPLE
For n = 1, its divisor set [1] can be partitioned only to an empty set [] and set [1], with sums 0 and 1 respectively, and gcd(1-0,1-1) = gcd(1,0) = 1, thus this partitioning is included, and a(1) = 1.
For n = 3, its divisor set [1, 3] can be partitioned as [] and [1,3] (sums 0 and 4, thus gcd(3-0,3-4) = 1), [1] and [3] (sums 1 and 3, thus gcd(3-1,3-3) = 2), thus a(3) = 1, and similarly a(p) = 1 for any other odd prime p as well.
For n = 6, its divisor set [1, 2, 3, 6] can be partitioned in eight ways as:
[] and [1, 2, 3, 6] (sums 0 and 12, gcd(6-0, 6-12) = 6),
[1, 2] and [3, 6] (sums 3 and 9, gcd(6-3, 6-9) = 3),
[1, 3] and [2, 6] (sums 4 and 8, gcd(6-4, 6-8) = 2),
[2] and [1, 3, 6] (sums 2 and 10, gcd(6-2, 6-10) = 4),
[3] and [1, 2, 6] (sums 3 and 9, gcd(6-3, 6-9) = 3),
[6] and [1, 2, 3] (sums 6 and 6, gcd(6-6, 6-6) = 0),
[1] and [2, 3, 6] (sums 1 and 11, gcd(6-1, 6-11) = 5),
[1, 6] and [2, 3] (sums 7 and 5, gcd(6-7, 6-5) = 1),
with only the last partitioning satisfying the required condition, thus a(6) = 1.
For n = 10, its divisor set [1, 2, 5, 10] can be partitioned in eight ways as:
[] and [1, 2, 5, 10] (sums 0 and 18, gcd(10-0, 10-18) = 2),
[1, 2] and [5, 10] (sums 3 and 15, gcd(10-3, 10-15) = 1),
[1, 5] and [2, 10] (sums 6 and 12, gcd(10-6, 10-12) = 2),
[2] and [1, 5, 10] (sums 2 and 16, gcd(10-2, 10-16) = 2),
[5] and [1, 2, 10] (sums 5 and 13, gcd(10-5, 10-13) = 1),
[10] and [1, 2, 5] (sums 10 and 8, gcd(10-10, 10-8) = 2),
[1] and [2, 5, 10] (sums 1 and 17, gcd(10-1, 10-17) = 1),
[1, 10] and [2, 5] (sums 11 and 7, gcd(10-11, 10-7) = 1),
of which four satisfy the required condition, thus a(10) = 4.
MATHEMATICA
Table[Function[d, Count[DeleteDuplicates[Sort /@ Map[{#, Complement[d, #]} &, Subsets@ d]], _?(CoprimeQ @@ (n - Total /@ #) &)]]@ Divisors@ n, {n, 105}] (* Michael De Vlieger, May 27 2019 *)
PROG
(PARI)
A325807(n) = { my(divs=divisors(n), s=sigma(n), r); sum(b=0, (2^(-1+length(divs)))-1, r=sumbybits(divs, 2*b); (1==gcd(n-(s-r), n-r))); };
sumbybits(v, b) = { my(s=0, i=1); while(b>0, s += (b%2)*v[i]; i++; b >>= 1); (s); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 24 2019
STATUS
approved