login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072341
a(n) = the least natural number k such that k*sigma(n) + 1 is prime.
1
1, 2, 1, 4, 1, 1, 2, 2, 4, 1, 1, 1, 2, 3, 3, 10, 1, 2, 2, 1, 3, 1, 3, 1, 10, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 6, 5, 1, 2, 2, 1, 1, 2, 4, 1, 1, 2, 3, 4, 4, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 5, 1, 3, 4, 4, 3, 2, 1, 1, 3, 1, 6, 2, 2, 3, 2, 1, 2, 3, 2, 6, 1, 4, 2, 1, 3, 2, 1, 2, 4, 1, 2, 2, 3, 2, 3, 2, 12, 1, 6, 1, 2, 3
OFFSET
1,2
COMMENTS
Conjecture: a(n) is less than or equal to n for all n.
LINKS
FORMULA
a(n) = A034693(A000203(n)). - Antti Karttunen, Nov 07 2017
EXAMPLE
sigma(4) = 7 and the least natural number k such that 7 k + 1 is prime is k = 4; so a(4) = 4.
MATHEMATICA
f[n_] := Module[{i}, i = 0; While[ ! PrimeQ[i*DivisorSigma[1, n] + 1], i++ ]; i]; Table[f[i], {i, 1, 150}]
PROG
(PARI) A072341(n) = { my(k=1, s=sigma(n)); while(!isprime(1+(k*s)), k++); k; }; \\ Antti Karttunen, Nov 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Jul 16 2002
STATUS
approved