Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 07 2017 18:30:31
%S 1,2,1,4,1,1,2,2,4,1,1,1,2,3,3,10,1,2,2,1,3,1,3,1,10,1,1,2,1,1,3,2,2,
%T 2,2,6,5,1,2,2,1,1,2,4,1,1,2,3,4,4,1,2,2,2,1,2,3,2,1,2,5,1,3,4,4,3,2,
%U 1,1,3,1,6,2,2,3,2,1,2,3,2,6,1,4,2,1,3,2,1,2,4,1,2,2,3,2,3,2,12,1,6,1,2,3
%N a(n) = the least natural number k such that k*sigma(n) + 1 is prime.
%C Conjecture: a(n) is less than or equal to n for all n.
%H Antti Karttunen, <a href="/A072341/b072341.txt">Table of n, a(n) for n = 1..16384</a>
%F a(n) = A034693(A000203(n)). - _Antti Karttunen_, Nov 07 2017
%e sigma(4) = 7 and the least natural number k such that 7 k + 1 is prime is k = 4; so a(4) = 4.
%t f[n_] := Module[{i}, i = 0; While[ ! PrimeQ[i*DivisorSigma[1, n] + 1], i++ ]; i]; Table[f[i], {i, 1, 150}]
%o (PARI) A072341(n) = { my(k=1,s=sigma(n)); while(!isprime(1+(k*s)),k++); k; }; \\ _Antti Karttunen_, Nov 07 2017
%Y Cf. A000203, A034693, A034694, A072344.
%K nonn
%O 1,2
%A _Joseph L. Pe_, Jul 16 2002