login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072340
Number of steps to reach an integer starting with n/3 and iterating the map x -> x*ceiling(x), or -1 if no integer is ever reached.
12
0, 2, 6, 0, 1, 1, 0, 5, 2, 0, 3, 2, 0, 1, 1, 0, 2, 4, 0, 3, 4, 0, 1, 1, 0, 22, 7, 0, 2, 5, 0, 1, 1, 0, 7, 2, 0, 4, 2, 0, 1, 1, 0, 2, 5, 0, 13, 9, 0, 1, 1, 0, 3, 3, 0, 2, 3, 0, 1, 1, 0, 3, 2, 0, 5, 2, 0, 1, 1, 0, 2, 3, 0, 8, 3, 0, 1, 1, 0, 5, 4, 0, 2, 4, 0, 1, 1, 0, 14, 2, 0, 3, 2, 0, 1, 1, 0, 2, 9, 0, 3, 9, 0, 1, 1
OFFSET
3,2
COMMENTS
We conjecture that an integer is always reached.
The occurrence of the first 1, 2, 3, 4 etc. is at the indices 7, 4, 13, 20, 10, 5, 29, 76, 50, 452, 244, 830, 49, 91, 319, 2639, 5753, 2215, 6151, 7148, 280, 28, 1783 - R. J. Mathar, Nov 25 2006
REFERENCES
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
LINKS
J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
N. J. A. Sloane, Seven Staggering Sequences.
MAPLE
g := proc(x) local M, t1, t2, t3; M := 3^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end;
f := proc(n) local t1, c; global g; if type(n, 'integer') then RETURN(0); fi; t1 := g(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := g(t1); od; RETURN(c); end;
[seq(f(n/3), n=3..120)]; # this gives the correct answer as long as the answer is < 99.
MATHEMATICA
a[n_] := Module[{x = n/3, s = 0}, While[!IntegerQ[x], x *= Ceiling[x]; s++]; s]; Table[a[n], {n, 3, 107}] (* Jean-François Alcover, Jan 27 2019, from PARI *)
PROG
(PARI) A072340(n)={ local(x, s) ; x=n/3 ; s=0 ; while( type(x)!="t_INT", x *= ceil(x) ; s++ ; ) ; return(s) ; } { for(n=3, 10000, print(n, " ", A072340(n)) ; ) ; } \\ R. J. Mathar, Nov 25 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and J. C. Lagarias, Sep 03 2002
STATUS
approved