login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072337
Inverse EULER transform of A064831 (with its initial 1 omitted).
3
1, 3, 3, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
OFFSET
0,2
COMMENTS
Also, dimensions of the graded Yang-Mills algebra ym(3) [Herscovich and Solotar]. - N. J. A. Sloane, Jan 02 2013
Apparently the same as A032170 for n > 2. - Ralf Stephan, Feb 01 2004
From Petros Hadjicostas, Dec 03 2017: (Start)
We clarify the name of the sequence and provide a sketch of a proof of R. Stephan's statement above.
For n>=0, let b(n) = A064831(n+1). Then B(x) = Sum_{n>=0} b(n)*x^n = Sum_{n>=0} A064831(n+1)*x^n = 1/((1-x^2)*(1-3*x+x^2)) (see the formula section for sequence A064831). Define a(0) = 1, and (a(n): n>=1) = invEULER(b(n): n>=0), i.e., we give a new (more correct) definition of the current sequence. Using Bernstein and Sloane (1995), we define the sequence (d(n): n>=1) via Sum_{n>=1} (d(n)/n)*x^n = log B(x). Since EULER(a(n): n>=1) = (b(n): n>=0), we have a(n) = (1/n)*Sum_{s|n} mu(s)*d(n/s). Using the change of indexes m=n/s, we get A(x) = 1 + Sum_{n>=1} a(n)*x^n = 1 + Sum_{s>=1} (mu(s)/s)*Sum_{m>=1} (d(m)/m)*(x^s)^m = 1 + Sum_{s>=1} (mu(s)/s)*log B(x^s).
From the documentation of sequence A032170, we see that its g.f. is Sum_{s>=1} (mu(s)/s)*log C(x^s), where C(x) = (1-x)^2/(1-3*x+x^2). To prove R. Stephan's claim above, we need to prove that Sum_{s>=1} (mu(s)/s)*log C(x^s) - x - 2*x^2 = Sum_{s>=1} (mu(s)/s)*log B(x^s) - 3*x - 3*x^2. The last equality is equivalent to Sum_{s>=1} (mu(s)/s)*log(B(x^s)/C(x^s)) = 2*x + x^2, which in turn is equivalent to -Sum_{s>=1} (mu(s)/s) log((1-x^s)^2*(1-x^{2*s})) = 2*x + x^2. The last equality follows from the identity -Sum_{s>=1} (mu(s)/s)*log(1-y^s) = y, which follows from the Lambert series Sum_{s>=1} mu(s)*y^s/(1-y^s) = y.
(End)
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Algebra and its Applications, Vol. 226-228 (1995), 57-72.
A. Connes and M. Dubois-Violette, Yang-Mills Algebra, arXiv:math/0206205 [math.QA], 2002.
Herscovich, Estanislao, and Solotar, Andrea, Representations of Yang-Mills algebras, Ann. of Math. (2) 173 (2011), no. 2, 1043-1080. - From N. J. A. Sloane, Jan 02 2013
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1 + Sum_{s>=1} (mu(s)/s)*log B(x^s), where B(x) = 1/((1-x^2) * (1-3*x+x^2)). - Petros Hadjicostas, Dec 03 2017
a(n) ~ ((1 + sqrt(5))/2)^(2*n) / n. - Vaclav Kotesovec, Aug 19 2018
MATHEMATICA
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
Join[{1}, EULERi[LinearRecurrence[{3, 0, -3, 1}, {3, 9, 24, 64}, 31]]] (* Jean-François Alcover, Aug 19 2018 *)
CROSSREFS
Sequence in context: A320450 A100886 A326175 * A335056 A132751 A218354
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 16 2002
STATUS
approved