login
A132751
Triangle T(n, k) = 2/Beta(n-k+1, k) - 1, read by rows.
2
1, 3, 3, 5, 11, 5, 7, 23, 23, 7, 9, 39, 59, 39, 9, 11, 59, 119, 119, 59, 11, 13, 83, 209, 279, 209, 83, 13, 15, 111, 335, 559, 559, 335, 111, 15, 17, 143, 503, 1007, 1259, 1007, 503, 143, 17, 19, 179, 719, 1679, 2519, 2519, 1679, 719, 179, 19
OFFSET
1,2
FORMULA
T(n, k) = 2*A003506(n, k) - 1, an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = 2/Beta(n-k+1, k) - 1.
Sum_{k=1..n} T(n, k) = n*(2^n -1) = A066524(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
3, 3;
5, 11, 5;
7, 23, 23, 7;
9, 39, 59, 39, 9;
11, 59, 119, 119, 59, 11;
13, 83, 209, 279, 209, 83, 13;
15, 111, 335, 559, 559, 335, 111, 15;
...
MATHEMATICA
T[n_, k_]:= 2/Beta[n-k+1, k] - 1;
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def A132751(n, k): return 2/beta(n-k+1, k) - 1
flatten([[A132751(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 16 2021
(Magma)
A132751:= func< n, k | 2*Factorial(n)/(Factorial(k-1)*Factorial(n-k)) -1 >;
[A132751(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
Sequence in context: A326175 A072337 A335056 * A218354 A286514 A235859
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 28 2007
STATUS
approved