login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132753
a(n) = 2^(n+1) - n + 1.
4
3, 4, 7, 14, 29, 60, 123, 250, 505, 1016, 2039, 4086, 8181, 16372, 32755, 65522, 131057, 262128, 524271, 1048558, 2097133, 4194284, 8388587, 16777194, 33554409, 67108840, 134217703, 268435430, 536870885, 1073741796, 2147483619
OFFSET
0,1
COMMENTS
Apart from a(0): Row sums of triangle A132752 (old name).
Apart from a(0): Binomial transform of [1, 3, 0, 4, 0, 4, 0, 4, ...].
FORMULA
From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (3 - 8*x + 6*x^2)/((1-x)^2 * (1-2*x)). (End)
E.g.f.: (1-x)*exp(x) + 2*exp(2*x). - G. C. Greubel, Feb 16 2021
EXAMPLE
a(3) = 14 = sum of row 3 terms of triangle A132752: (3 + 5 + 5 + 1).
a(3) = 14 = (1, 3, 3, 1) dot (1, 3, 0, 4) = (1 + 9 + 0 + 4).
MAPLE
A132753:= n-> 2^(n+1) -n+1; seq(A132753(n), n=0..40) # G. C. Greubel, Feb 16 2021
MATHEMATICA
Table[2^(n+1) -n+1, {n, 0, 30}] (* Bruno Berselli, Aug 31 2013 *)
PROG
(PARI) a(n)=2^(n+1)-n+1
(PARI) Vec( (3-8*x+6*x^2)/((1-x)^2*(1-2*x)) + O(x^40)) \\ Colin Barker, Mar 14 2014
(Sage) [2^(n+1) -n+1 for n in (0..40)] # G. C. Greubel, Feb 16 2021
(Magma) [2^(n+1) -n+1: n in [0..40]]; // G. C. Greubel, Feb 16 2021
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Aug 28 2007
EXTENSIONS
More terms Vladimir Joseph Stephan Orlovsky, Dec 25 2008
Changed first member, and better name from Ralf Stephan, Aug 31 2013
STATUS
approved