OFFSET
0,2
LINKS
FORMULA
Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,14), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = 14*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Chai Wah Wu, Jun 02 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: x*(13*x - 14)/(x - 1)^3. (End)
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/27 - 57128792093/1084231348200. (End)
MATHEMATICA
Table[(n(n+27))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 14, 29}, 50] (* Harvey P. Dale, Apr 10 2022 *)
PROG
(PARI) a(n)=n*(n+27)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved