login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n + 27)/2.
3

%I #37 Jan 12 2025 21:18:29

%S 0,14,29,45,62,80,99,119,140,162,185,209,234,260,287,315,344,374,405,

%T 437,470,504,539,575,612,650,689,729,770,812,855,899,944,990,1037,

%U 1085,1134,1184,1235,1287,1340,1394,1449,1505,1562,1620

%N a(n) = n*(n + 27)/2.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,14), for n>=1. - _Milan Janjic_, Dec 20 2008

%F a(n) = n + a(n-1) + 13 (with a(0)=0). - _Vincenzo Librandi_, Aug 03 2010

%F a(n) = 14*n - floor(n/2) + floor(n^2/2). - _Wesley Ivan Hurt_, Jun 15 2013

%F From _Chai Wah Wu_, Jun 02 2016: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.

%F G.f.: x*(13*x - 14)/(x - 1)^3. (End)

%F From _Amiram Eldar_, Jan 10 2021: (Start)

%F Sum_{n>=1} 1/a(n) = 2*A001008(27)/(27*A002805(27)) = 312536252003/1084231348200.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/27 - 57128792093/1084231348200. (End)

%F From _Elmo R. Oliveira_, Jan 12 2025: (Start)

%F E.g.f.: exp(x)*x*(28 + x)/2.

%F a(n) = A132769(n)/2. (End)

%t Table[(n(n+27))/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,14,29},50] (* _Harvey P. Dale_, Apr 10 2022 *)

%o (PARI) a(n)=n*(n+27)/2 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A000217, A001008, A002805, A056126, A132769.

%K nonn,easy,changed

%O 0,2

%A _Omar E. Pol_, Aug 28 2007