login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132755
a(n) = n*(n + 25)/2.
2
0, 13, 27, 42, 58, 75, 93, 112, 132, 153, 175, 198, 222, 247, 273, 300, 328, 357, 387, 418, 450, 483, 517, 552, 588, 625, 663, 702, 742, 783, 825, 868, 912, 957, 1003, 1050, 1098, 1147, 1197, 1248, 1300, 1353, 1407, 1462, 1518, 1575
OFFSET
0,2
FORMULA
Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n, n-1, 13), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 12 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = 13*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(0)=0, a(1)=13, a(2)=27; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 09 2014
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(25)/(25*A002805(25)) = 34052522467/111546435000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 19081066231/334639305000. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(12*x - 13)/(x-1)^3.
E.g.f.: exp(x)*x*(26 + x)/2.
a(n) = A132767(n)/2. (End)
MATHEMATICA
Table[(n(n+25))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 27}, 50] (* Harvey P. Dale, Aug 09 2014 *)
PROG
(Magma) [n*(n + 25)/2 : n in [0..50]]; // Wesley Ivan Hurt, Jan 23 2017
(PARI) a(n)=n*(n+25)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved