login
A195045
Concentric 13-gonal numbers.
8
0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
OFFSET
0,3
COMMENTS
Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012
FORMULA
a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023
MAPLE
A195045:=n->13*n^2/4+9*((-1)^n-1)/8: seq(A195045(n), n=0..70); # Wesley Ivan Hurt, Nov 22 2015
MATHEMATICA
Table[13 n^2/4 + 9 ((-1)^n - 1)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 22 2015 *)
PROG
(Magma) [13*n^2/4+9*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
(Haskell)
a195045 n = a195045_list !! n
a195045_list = scanl (+) 0 a175886_list
-- Reinhard Zumkeller, Jan 07 2012
(PARI) a(n)=13*n^2/4+9*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
(PARI) concat(0, Vec(-x*(1+11*x+x^2)/((1+x)*(x-1)^3) + O(x^50))) \\ Altug Alkan, Nov 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved