OFFSET
0,3
COMMENTS
Also concentric enneagonal numbers or concentric nonagonal numbers.
Partial sums of A056020. - Reinhard Zumkeller, Jan 07 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = (9*n^2 + 5/2*((-1)^n - 1))/4.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+7*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A060544(n+1). (End)
Sum_{n>=1} 1/a(n) = Pi^2/54 + tan(sqrt(5)*Pi/6)*Pi/(3*sqrt(5)). - Amiram Eldar, Jan 16 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 9, 19}, 60] (* Harvey P. Dale, Nov 24 2019 *)
PROG
(Magma) [(9*n^2+5/2*((-1)^n-1))/4: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
(Haskell)
a195042 n = a195042_list !! n
a195042_list = scanl (+) 0 a056020_list
-- Reinhard Zumkeller, Jan 07 2012
(PARI) a(n)=(9*n^2+5/2*((-1)^n-1))/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved