OFFSET
1,2
COMMENTS
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 13).
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
G.f.: x*(1+11*x+x^2)/((1+x)*(1-x)^2).
a(n) = (26*n+9*(-1)^n-13)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = a(n-2)+13.
a(n) = 13*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n>1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/13)*cot(Pi/13). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((26*x - 13)*exp(x) + 9*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/13).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/13)*cosec(Pi/13). (End)
MATHEMATICA
Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* Bruno Berselli, Feb 29 2012 *)
CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{1, 1, -1}, {1, 12, 14}, 60] (* Harvey P. Dale, Oct 23 2015 *)
PROG
(Haskell)
a175886 n = a175886_list !! (n-1)
a175886_list = 1 : 12 : map (+ 13) a175886_list
-- Reinhard Zumkeller, Jan 07 2012
(Magma) [n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012
(Magma) [(26*n+9*(-1)^n-13)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
(PARI) a(n)=(26*n+9*(-1)^n-13)/4 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 08 2010 - Nov 17 2010
STATUS
approved