login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {1, 12} mod 13.
13

%I #46 Nov 27 2024 07:26:12

%S 1,12,14,25,27,38,40,51,53,64,66,77,79,90,92,103,105,116,118,129,131,

%T 142,144,155,157,168,170,181,183,194,196,207,209,220,222,233,235,246,

%U 248,259,261,272,274,285,287,298,300,311,313,324,326,337,339,350

%N Numbers that are congruent to {1, 12} mod 13.

%C Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 13).

%H Bruno Berselli, <a href="/A175886/b175886.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F G.f.: x*(1+11*x+x^2)/((1+x)*(1-x)^2).

%F a(n) = (26*n+9*(-1)^n-13)/4.

%F a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).

%F a(n) = a(n-2)+13.

%F a(n) = 13*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n>1.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/13)*cot(Pi/13). - _Amiram Eldar_, Dec 04 2021

%F E.g.f.: 1 + ((26*x - 13)*exp(x) + 9*exp(-x))/4. - _David Lovler_, Sep 04 2022

%F From _Amiram Eldar_, Nov 25 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/13).

%F Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/13)*cosec(Pi/13). (End)

%t Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* _Bruno Berselli_, Feb 29 2012 *)

%t CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* _Vincenzo Librandi_, Aug 19 2013 *)

%t LinearRecurrence[{1,1,-1},{1,12,14},60] (* _Harvey P. Dale_, Oct 23 2015 *)

%o (Haskell)

%o a175886 n = a175886_list !! (n-1)

%o a175886_list = 1 : 12 : map (+ 13) a175886_list

%o -- _Reinhard Zumkeller_, Jan 07 2012

%o (Magma) [n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012

%o (Magma) [(26*n+9*(-1)^n-13)/4: n in [1..55]]; // _Vincenzo Librandi_, Aug 19 2013

%o (PARI) a(n)=(26*n+9*(-1)^n-13)/4 \\ _Charles R Greathouse IV_, Sep 24 2015

%Y Cf. A000217, A091998, A113801, A005408, A047209, A007310, A047336, A047522, A056020, A090771, A175885, A175887.

%Y Cf. A195045 (partial sums).

%K nonn,easy

%O 1,2

%A _Bruno Berselli_, Oct 08 2010 - Nov 17 2010