login
A342491
a(n) = f(x)+f(y)+f(z), where (x,y,h) is the n-th Pythagorean triple listed in (A046083, A046084, A009000), and f(m)=A176774(m) is the smallest polygonality of m.
3
12, 14, 23, 12, 28, 29, 27, 20, 38, 52, 27, 22, 11, 47, 20, 49, 53, 16, 69, 81, 17, 47, 59, 59, 34, 41, 93, 32, 76, 33, 34, 121, 76, 93, 88, 33, 37, 39, 101, 102, 83, 27, 90, 52, 73, 183, 75, 37, 45, 130, 105, 15, 155, 83, 120, 54, 106, 133, 129, 15, 123, 42, 225
OFFSET
1,1
COMMENTS
Inspired by (A245646, A245647, A245648), for which a(n) = 12.
Examples of lower terms: 11 for (21, 28, 35), 10 for (64, 120, 136) and 9 for (8778, 10296, 13530).
LINKS
Michel Marcus, Table of n, a(n) for n = 1..12471 (hypotenuses <= 10000).
FORMULA
a(n) = f(A046083(n)) + f(A046084(n)) + f(A009000(n)) where f is A176774.
EXAMPLE
a(1) = 12 because (3, 4, 5) are (3-, 4-, 5-) gonal numbers, and 3+4+5=12.
PROG
(PARI) tp(n) = my(k=3); while( !ispolygonal(n, k), k++); k; \\ A176774
f(v) = vecsum(apply(tp, v));
list(lim) = {my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [h, middle, small]); ); ); ); v = vecsort(Vec(v)); apply(f, v); } \\ adapted from A009000
CROSSREFS
Cf. A213188 (see 2nd comment).
Sequence in context: A342814 A255842 A229966 * A101557 A019292 A175886
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 14 2021
STATUS
approved