login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concentric 13-gonal numbers.
8

%I #39 Jan 16 2023 08:19:39

%S 0,1,13,27,52,79,117,157,208,261,325,391,468,547,637,729,832,937,1053,

%T 1171,1300,1431,1573,1717,1872,2029,2197,2367,2548,2731,2925,3121,

%U 3328,3537,3757,3979,4212,4447,4693,4941,5200,5461,5733,6007,6292,6579,6877,7177,7488,7801,8125

%N Concentric 13-gonal numbers.

%C Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.

%C Partial sums of A175886. - _Reinhard Zumkeller_, Jan 07 2012

%H Vincenzo Librandi, <a href="/A195045/b195045.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(n) = 13*n^2/4+9*((-1)^n-1)/8.

%F From _R. J. Mathar_, Sep 28 2011: (Start)

%F G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).

%F a(n)+a(n+1) = A069126(n+1). (End)

%F a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - _Wesley Ivan Hurt_, Nov 22 2015

%F Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - _Amiram Eldar_, Jan 16 2023

%p A195045:=n->13*n^2/4+9*((-1)^n-1)/8: seq(A195045(n), n=0..70); # _Wesley Ivan Hurt_, Nov 22 2015

%t Table[13 n^2/4 + 9 ((-1)^n - 1)/8, {n, 0, 50}] (* _Wesley Ivan Hurt_, Nov 22 2015 *)

%o (Magma) [13*n^2/4+9*((-1)^n-1)/8: n in [0..50]]; // _Vincenzo Librandi_, Sep 29 2011

%o (Haskell)

%o a195045 n = a195045_list !! n

%o a195045_list = scanl (+) 0 a175886_list

%o -- _Reinhard Zumkeller_, Jan 07 2012

%o (PARI) a(n)=13*n^2/4+9*((-1)^n-1)/8 \\ _Charles R Greathouse IV_, Oct 07 2015

%o (PARI) concat(0, Vec(-x*(1+11*x+x^2)/((1+x)*(x-1)^3) + O(x^50))) \\ _Altug Alkan_, Nov 22 2015

%Y Column 13 of A195040.

%Y Cf. A032527, A032528, A069126, A175886, A195043, A195046, A195143, A195145.

%K nonn,easy

%O 0,3

%A _Omar E. Pol_, Sep 27 2011