OFFSET
0,3
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = 15*n^2/4+11*((-1)^n-1)/8.
From Harvey P. Dale, Feb 23 2012: (Start)
a(0)=0, a(1)=1, a(2)=15, a(3)=31, a(n)=2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -((x*(1+x*(13+x)))/((-1+x)^3*(1+x))). (End)
Sum_{n>=1} 1/a(n) = Pi^2/90 + tan(sqrt(11/15)*Pi/2)*Pi/sqrt(165). - Amiram Eldar, Jan 16 2023
MATHEMATICA
Table[15n^2/4+11((-1)^n-1)/8, {n, 0, 50}] (* or *) LinearRecurrence[ {2, 0, -2, 1}, {0, 1, 15, 31}, 50] (* Harvey P. Dale, Feb 23 2012 *)
PROG
(PARI) a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
EXTENSIONS
a(1)=1 added by Harvey P. Dale, Feb 23 2012
STATUS
approved