login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132752
Triangle T(n, k) = 2*A132749(n, k) - 1, read by rows.
2
1, 3, 1, 3, 3, 1, 3, 5, 5, 1, 3, 7, 11, 7, 1, 3, 9, 19, 19, 9, 1, 3, 11, 29, 39, 29, 11, 1, 3, 13, 41, 69, 69, 41, 13, 1, 3, 15, 55, 111, 139, 111, 55, 15, 1, 3, 17, 71, 167, 251, 251, 167, 71, 17, 1
OFFSET
0,2
FORMULA
T(n, k) = 2*A132749(n, k) - 1, an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = A109128(n, k) with T(n, 0) = 3.
Sum_{k=0..n} T(n, k) = 2^(n+1) -n +1 -2*[n=0] = A132753(n) - 2*[n=0]. (End)
EXAMPLE
First few rows of the triangle are:
1;
3, 1;
3, 3, 1;
3, 5, 5, 1;
3, 7, 11, 7, 1;
3, 9, 19, 19, 9, 1;
3, 11, 29, 39, 29, 11, 1;
...
MATHEMATICA
T[n_, k_]:= If[k==n, 1, If[k==0, 3, 2*Binomial[n, k] -1 ]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def A132752(n, k): return 1 if k==n else 3 if k==0 else 2*binomial(n, k) -1
flatten([[A132752(n, k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
(Magma)
A132752:= func< n, k | k eq n select 1 else k eq 0 select 3 else 2*Binomial(n, k) -1 >;
[A132752(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 28 2007
STATUS
approved