login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A132749
Triangle T(n,k) = binomial(n, k) with T(n, 0) = 2, read by rows.
4
1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 4, 6, 4, 1, 2, 5, 10, 10, 5, 1, 2, 6, 15, 20, 15, 6, 1, 2, 7, 21, 35, 35, 21, 7, 1, 2, 8, 28, 56, 70, 56, 28, 8, 1, 2, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
OFFSET
0,2
COMMENTS
Add 1 to all but the top entry in the left column of the Pascal matrix. - R. J. Mathar, Jan 18 2013
FORMULA
T(n,k) = A103451(n,k) * A007318(n,k), an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n,k) = binomial(n, k) with T(n, 0) = 2 for n>0.
Sum_{k=0..n} T(n, k) = A083318(n) = 2^n + 1^n - 0^n. (End)
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
2, 2, 1;
2, 3, 3, 1;
2, 4, 6, 4, 1;
2, 5, 10, 10, 5, 1;
...
MATHEMATICA
T[n_, k_]:= If[k==n, 1, If[k==0, 2, Binomial[n, k]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def A132749(n, k): return 1 if k==n else 2 if k==0 else binomial(n, k)
flatten([[A132749(n, k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
(Magma)
A132749:= func< n, k | k eq n select 1 else k eq 0 select 2 else Binomial(n, k) >;
[A132749(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
Cf. A007318, A083318 (row sums), A103451.
Sequence in context: A070080 A230196 A131400 * A271106 A273673 A376570
KEYWORD
nonn,easy,tabl,less
AUTHOR
Gary W. Adamson, Aug 28 2007
EXTENSIONS
More terms added by G. C. Greubel, Feb 16 2021
STATUS
approved