login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230196
Number of pairs (p,q) such that 2*p + 3*q = n and p != q.
1
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 3, 3, 4, 3, 3, 4, 4, 4, 5, 3, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 7, 6, 7, 7, 6, 7, 8, 7, 8, 7, 8, 8, 9, 8, 8, 9, 9, 9, 10, 8, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 12, 11, 12, 12, 11, 12, 13, 12, 13, 12, 13, 13, 14, 13, 13, 14, 14, 14, 15, 13, 15, 15, 15, 15, 15, 15, 16, 16, 16
OFFSET
1,11
FORMULA
a(n) = floor((n+1)/6)+floor((n-1)/6)-floor(n/6)+floor((n-1)/5)-floor(n/5).
G.f.: x*(2*x^8 + 2*x^7 + x^6)/((1+x)*(1-x^3)*(1-x^5)). - Ralf Stephan, Oct 12 2013
a(n) = floor((n-3)/2)-floor((n-3)/3)+floor((n-1)/5)-floor(n/5). - Mircea Merca, Nov 27 2013
MAPLE
seq(floor((n+1)*(1/6))+floor((n-1)*(1/6))-floor((1/6)*n)+floor((n-1)*(1/5))-floor((1/5)*n), n=1..99)
MATHEMATICA
CoefficientList[Series[(2 x^8 + 2 x^7 + x^6)/((1 + x) (1 - x^3) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 13 2013 *)
PROG
(Magma) [Floor((n+1)*(1/6))+Floor((n-1)*(1/6))-Floor((1/6)*n)+Floor((n-1)*(1/5))-Floor((1/5)*n): n in [1..80]]; // Vincenzo Librandi, Oct 13 2013
CROSSREFS
Sequence in context: A230241 A029315 A070080 * A131400 A132749 A271106
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Oct 11 2013
STATUS
approved