login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of pairs (p,q) such that 2*p + 3*q = n and p != q.
1

%I #31 Sep 08 2022 08:46:06

%S 0,0,0,0,0,0,1,1,1,0,2,1,2,2,1,2,3,2,3,2,3,3,4,3,3,4,4,4,5,3,5,5,5,5,

%T 5,5,6,6,6,5,7,6,7,7,6,7,8,7,8,7,8,8,9,8,8,9,9,9,10,8,10,10,10,10,10,

%U 10,11,11,11,10,12,11,12,12,11,12,13,12,13,12,13,13,14,13,13,14,14,14,15,13,15,15,15,15,15,15,16,16,16

%N Number of pairs (p,q) such that 2*p + 3*q = n and p != q.

%H Vincenzo Librandi, <a href="/A230196/b230196.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,1,1,1,1,0,-1,-1).

%F a(n) = floor((n+1)/6)+floor((n-1)/6)-floor(n/6)+floor((n-1)/5)-floor(n/5).

%F G.f.: x*(2*x^8 + 2*x^7 + x^6)/((1+x)*(1-x^3)*(1-x^5)). - _Ralf Stephan_, Oct 12 2013

%F a(n) = floor((n-3)/2)-floor((n-3)/3)+floor((n-1)/5)-floor(n/5). - _Mircea Merca_, Nov 27 2013

%p seq(floor((n+1)*(1/6))+floor((n-1)*(1/6))-floor((1/6)*n)+floor((n-1)*(1/5))-floor((1/5)*n),n=1..99)

%t CoefficientList[Series[(2 x^8 + 2 x^7 + x^6)/((1 + x) (1 - x^3) (1 - x^5)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Oct 13 2013 *)

%o (Magma) [Floor((n+1)*(1/6))+Floor((n-1)*(1/6))-Floor((1/6)*n)+Floor((n-1)*(1/5))-Floor((1/5)*n): n in [1..80]]; // _Vincenzo Librandi_, Oct 13 2013

%K nonn,easy

%O 1,11

%A _Mircea Merca_, Oct 11 2013