login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131400
A046854 + A065941 - I (Identity matrix).
1
1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 6, 3, 1, 2, 4, 7, 7, 4, 1, 2, 4, 11, 8, 11, 4, 1, 2, 5, 12, 15, 15, 12, 5, 1, 2, 5, 17, 16, 30, 16, 17, 5, 1, 2, 6, 18, 27, 36, 36, 27, 18, 6, 1, 2, 6, 24, 28, 63, 42, 63, 28, 24, 6, 1, 2, 7, 25, 44, 71, 84, 84, 71, 44, 25, 7, 1
OFFSET
0,2
COMMENTS
Row sums = A001595: (1, 3, 5, 9, 15, 25, 41, 67,...).
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
2, 2, 1;
2, 3, 3, 1;
2, 3, 6, 3, 1;
2, 4, 7, 7, 4, 1;
2, 4, 11, 8, 11, 4, 1; ...
MATHEMATICA
With[{B = Binomial}, Table[If[k==n, 1, B[Floor[(n+k)/2], k] + B[n - Floor[(k+1)/2], Floor[k/2]]], {n, 0, 12}, {k, 0, n}]]//Flatten (* G. C. Greubel, Jul 13 2019 *)
PROG
(PARI) b=binomial; T(n, k) = if(k==n, 1, b((n+k)\2, k) + b(n - (k+1)\2, k\2));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ", ))) \\ G. C. Greubel, Jul 13 2019
(Magma) B:=Binomial; [k eq n select 1 else B(Floor((n+k)/2), k) + B(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 13 2019
(Sage)
def T(n, k):
b=binomial;
if (k==n): return 1
else: return b(floor((n+k)/2), k) + b(n - floor((k+1)/2), floor(k/2))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 13 2019
(GAP)
B:=Binomial;;
T:= function(n, k)
if k=n then return 1;
else return B(Int((n+k)/2), k) + B(n - Int((k+1)/2), Int(k/2));
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 13 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jul 06 2007
EXTENSIONS
More terms added by G. C. Greubel, Jul 13 2019
STATUS
approved