login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132747 a(n) = number of non-isolated divisors of n. 11
0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A divisor d of n is non-isolated if either d-1 or d+1 divides n. a(2n-1) = 0 for all n >= 1.

LINKS

Ray Chandler, Table of n, a(n) for n=1..10000

FORMULA

a(n) = A000005(n) - A132881(n).

EXAMPLE

The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are next to each other and 4 and 5 are next to each other. So a(20) = the number of these divisors, which is 4.

MATHEMATICA

Table[Length[Select[Divisors[n], If[ # > 1, IntegerQ[n/(#*(# - 1))]] || IntegerQ[n/(#*(# + 1))] &]], {n, 1, 90}] (* Stefan Steinerberger, Oct 26 2007 *)

PROG

(PARI) a(n) = my(div = divisors(n)); sumdiv(n, d, vecsearch(div, d-1) || vecsearch(div, d+1)); \\ Michel Marcus, Aug 22 2014

CROSSREFS

Cf. A129308, A132748.

Sequence in context: A324848 A090330 A332447 * A301979 A183063 A318979

Adjacent sequences:  A132744 A132745 A132746 * A132748 A132749 A132750

KEYWORD

nonn

AUTHOR

Leroy Quet, Aug 27 2007

EXTENSIONS

More terms from Stefan Steinerberger, Oct 26 2007

Extended by Ray Chandler, Jun 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)