

A132747


a(n) = number of nonisolated divisors of n.


11



0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A divisor d of n is nonisolated if either d1 or d+1 divides n. a(2n1) = 0 for all n >= 1.


LINKS

Ray Chandler, Table of n, a(n) for n=1..10000


FORMULA

a(n) = A000005(n)  A132881(n).


EXAMPLE

The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are next to each other and 4 and 5 are next to each other. So a(20) = the number of these divisors, which is 4.


MATHEMATICA

Table[Length[Select[Divisors[n], If[ # > 1, IntegerQ[n/(#*(#  1))]]  IntegerQ[n/(#*(# + 1))] &]], {n, 1, 90}] (* Stefan Steinerberger, Oct 26 2007 *)


PROG

(PARI) a(n) = my(div = divisors(n)); sumdiv(n, d, vecsearch(div, d1)  vecsearch(div, d+1)); \\ Michel Marcus, Aug 22 2014


CROSSREFS

Cf. A129308, A132748.
Sequence in context: A324848 A090330 A332447 * A301979 A183063 A318979
Adjacent sequences: A132744 A132745 A132746 * A132748 A132749 A132750


KEYWORD

nonn


AUTHOR

Leroy Quet, Aug 27 2007


EXTENSIONS

More terms from Stefan Steinerberger, Oct 26 2007
Extended by Ray Chandler, Jun 24 2008


STATUS

approved



