OFFSET
1,3
COMMENTS
A divisor d of n is isolated if neither d-1 nor d+1 divides n.
The convention for 1 is that it is an isolated divisor iff n is odd. - Olivier Gérard, Sep 22 2007
LINKS
Ray Chandler, Table of n, a(n) for n=1..10000
EXAMPLE
The positive divisors of 56 are 1,2,4,7,8,14,28,56. Of these, 1 and 2 are adjacent and 7 and 8 are adjacent. The isolated divisors are therefore 4,14,28,56. There are 4 of these, so a(56) = 4.
MAPLE
with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO, {div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); # Emeric Deutsch, Oct 02 2007
MATHEMATICA
Table[Length@Select[Divisors[n], (#==1||Mod[n, #-1]>0)&&Mod[n, #+1]>0&], {n, 1, 200}] - Olivier Gérard Sep 22 2007.
id[n_]:=DivisorSigma[0, n]-Length[Union[Flatten[Select[Partition[Divisors[ n], 2, 1], #[[2]]-#[[1]]==1&]]]]; Array[id, 110] (* Harvey P. Dale, Jun 04 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 03 2007
EXTENSIONS
More terms from Olivier Gérard, Sep 22 2007
STATUS
approved