login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079004
Least x>=3 such that F(x)==1 (mod 3^n) where F(x) denotes the x-th Fibonacci number (A000045).
4
7, 10, 10, 34, 106, 322, 970, 2914, 8746, 26242, 78730, 236194, 708586, 2125762, 6377290, 19131874, 57395626, 172186882, 516560650, 1549681954, 4649045866, 13947137602, 41841412810, 125524238434, 376572715306, 1129718145922
OFFSET
1,1
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnick, "Concrete Mathematics", second edition, Addison Wesley, ex. 6.59.
FORMULA
a(1)=7, a(2)=10, a(3)=10; for n>3, a(n) = 3*a(n-1) + 4.
a(n) = 4*3^(n-2)-2 for n >= 3.
G.f.: 8*x^2+(23/3)*x+14/9+2/(x-1)-4/(9*(3*x-1)). - Robert Israel, Jan 15 2015
MAPLE
7, 10, seq(4*3^(n-2)-2, n=3..50); # Robert Israel, Jan 15 2015
MATHEMATICA
a=2; lst={7, 10}; Do[a=a*3+4; AppendTo[lst, a], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
LinearRecurrence[{4, -3}, {7, 10, 10, 34}, 40] (* Harvey P. Dale, Aug 16 2024 *)
PROG
(PARI) a(n)=if(n<0, 0, x=3; while((fibonacci(x)-1)%(3^n)>0, x++); x)
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 01 2003
EXTENSIONS
Formula corrected by Robert Israel, Jan 15 2015
STATUS
approved