login
A192268
Anti-abundant numbers.
8
7, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 27, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 55, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113
OFFSET
1,1
COMMENTS
An anti-abundant number is a number n for which sigma*(n) > n, where sigma*(n) is the sum of the anti-divisors of n. Like A005101 but using anti-divisors.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Paolo P. Lava)
FORMULA
A000027 = A073930 UNION A192267 UNION {this set}.
EXAMPLE
25 is anti-abundant because its anti-divisors are 2, 3, 7, 10, 17 and their sum is 39 > 25.
MAPLE
isA192268 := proc(n) A066417(n) > n ; end proc:
for n from 1 to 500 do if isA192268(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Jul 04 2011
MATHEMATICA
antiAbQ[n_] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]] > n; Select[Range[120], antiAbQ] (* Amiram Eldar, Jan 13 2022 after Michael De Vlieger at A066417 *)
PROG
(Python)
from itertools import count, islice
from sympy import divisor_sigma, multiplicity
def A192268gen(): return filter(lambda n:divisor_sigma(2*n-1)+divisor_sigma(2*n+1)+divisor_sigma(n//2**(k:=multiplicity(2, n)))*2**(k+1)-7*n-2 > 0, count(2))
A192268_list = list(islice(A192268gen(), 16)) # Chai Wah Wu, Dec 23 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 28 2011
STATUS
approved