

A192268


Antiabundant numbers.


8



7, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 27, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 55, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

An antiabundant number is a number n for which sigma*(n) > n, where sigma*(n) is the sum of the antidivisors of n. Like A005101 but using antidivisors.


LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..5000


FORMULA

A000027 = A073930 UNION A192267 UNION {this set}.


EXAMPLE

25 is antiabundant because its antidivisors are 2, 3, 7, 10, 17 and their sum is 39 > 25.


MAPLE

isA192268 := proc(n) A066417(n) > n ; end proc:
for n from 1 to 500 do if isA192268(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Jul 04 2011


CROSSREFS

Cf. A066417, A005101, A066272, A192267.
Sequence in context: A317336 A079004 A265311 * A117319 A120645 A168158
Adjacent sequences: A192265 A192266 A192267 * A192269 A192270 A192271


KEYWORD

nonn,easy


AUTHOR

Paolo P. Lava, Jun 28 2011


STATUS

approved



