OFFSET
1,1
COMMENTS
An anti-abundant number is a number n for which sigma*(n) > n, where sigma*(n) is the sum of the anti-divisors of n. Like A005101 but using anti-divisors.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Paolo P. Lava)
EXAMPLE
25 is anti-abundant because its anti-divisors are 2, 3, 7, 10, 17 and their sum is 39 > 25.
MAPLE
isA192268 := proc(n) A066417(n) > n ; end proc:
for n from 1 to 500 do if isA192268(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Jul 04 2011
MATHEMATICA
antiAbQ[n_] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]] > n; Select[Range[120], antiAbQ] (* Amiram Eldar, Jan 13 2022 after Michael De Vlieger at A066417 *)
PROG
(Python)
from itertools import count, islice
from sympy import divisor_sigma, multiplicity
def A192268gen(): return filter(lambda n:divisor_sigma(2*n-1)+divisor_sigma(2*n+1)+divisor_sigma(n//2**(k:=multiplicity(2, n)))*2**(k+1)-7*n-2 > 0, count(2))
A192268_list = list(islice(A192268gen(), 16)) # Chai Wah Wu, Dec 23 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 28 2011
STATUS
approved