|
|
A073930
|
|
Numbers that are equal to the sum of their anti-divisors.
|
|
11
|
|
|
5, 8, 41, 56, 946, 5186, 6874, 8104, 17386, 27024, 84026, 167786, 2667584, 4921776, 27914146, 505235234, 3238952914, 73600829714, 455879783074, 528080296234, 673223621664, 4054397778846, 4437083907194, 4869434608274, 6904301600914, 7738291969456
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See A066272 for definition of anti-divisor.
|
|
LINKS
|
|
|
EXAMPLE
|
n=5186, the anti-divisor sum: 3+4+11+23+41+253+451+943+3457 = 5186.
|
|
MAPLE
|
for n from 1 to q do
a:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi;
od; if a=n then print(n); fi; od; end:
|
|
PROG
|
(Python)
from sympy import divisors
A073930 = [n for n in range(1, 10**5) if sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d]) == n] # Chai Wah Wu, Aug 14 2014
(PARI) sad(n) = vecsum(select(t->n%t && t<n, concat(concat(divisors(2*n-1), divisors(2*n+1)), 2*divisors(n)))); \\ A066417
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|