login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192265
Decimal expansion of Sum{k=1..infinity}{1/k^sigma(k)}
3
1, 1, 3, 7, 4, 7, 0, 8, 8, 8, 0, 9, 5, 2, 5, 5, 6, 1, 3, 7, 3, 9, 6, 3, 0, 6, 2, 8, 9, 4, 8, 4, 8, 7, 6, 3, 8, 4, 1, 6, 2, 3, 8, 8, 8, 6, 5, 7, 0, 5, 4, 9, 3, 9, 5, 3, 9, 2, 9, 0, 0, 4, 8, 6, 4, 6, 3, 3, 3, 4, 0, 6, 2, 5, 8, 0, 5, 2, 0, 4, 1, 0, 1, 7, 3, 2
OFFSET
1,3
COMMENTS
Rational approximation: 18071/15887. Continued fraction (1,7,3,1,1,1,4,1,2,1,2,3...).
EXAMPLE
1.137470888095255613739630628948487638416238886570549395392900486463...
MAPLE
with(numtheory);
P:=proc(i)
local a, n;
a:=0;
for n from 1 by 1 to i do a:=a+1/n^sigma(n); od;
print(evalf(a, 300));
end:
P(1000);
MATHEMATICA
Clear[s]; s[n_] := s[n] = RealDigits[ Sum[ 1/k^DivisorSigma[1, k], {k, 1, n}], 10, 86] // First; s[n=100]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
PROG
(PARI) suminf(k=1, k^-sigma(k)) \\ Charles R Greathouse IV, Jun 29 2011
CROSSREFS
Cf. A192266.
Sequence in context: A198886 A305202 A340013 * A274511 A371332 A179706
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, Jun 27 2011
STATUS
approved