Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 16 2024 12:37:59
%S 7,10,10,34,106,322,970,2914,8746,26242,78730,236194,708586,2125762,
%T 6377290,19131874,57395626,172186882,516560650,1549681954,4649045866,
%U 13947137602,41841412810,125524238434,376572715306,1129718145922
%N Least x>=3 such that F(x)==1 (mod 3^n) where F(x) denotes the x-th Fibonacci number (A000045).
%D R. L. Graham, D. E. Knuth and O. Patashnick, "Concrete Mathematics", second edition, Addison Wesley, ex. 6.59.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).
%F a(1)=7, a(2)=10, a(3)=10; for n>3, a(n) = 3*a(n-1) + 4.
%F a(n) = 4*3^(n-2)-2 for n >= 3.
%F G.f.: 8*x^2+(23/3)*x+14/9+2/(x-1)-4/(9*(3*x-1)). - _Robert Israel_, Jan 15 2015
%p 7, 10, seq(4*3^(n-2)-2,n=3..50); # _Robert Israel_, Jan 15 2015
%t a=2;lst={7,10};Do[a=a*3+4;AppendTo[lst,a],{n,0,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 25 2008 *)
%t LinearRecurrence[{4,-3},{7,10,10,34},40] (* _Harvey P. Dale_, Aug 16 2024 *)
%o (PARI) a(n)=if(n<0,0,x=3; while((fibonacci(x)-1)%(3^n)>0,x++); x)
%Y Cf. A000045, A003462, A007051, A034472, A024023, A067771, A029858, A134931, A115099, A100774.
%K nonn,easy
%O 1,1
%A _Benoit Cloitre_, Feb 01 2003
%E Formula corrected by _Robert Israel_, Jan 15 2015