OFFSET
0,4
LINKS
T. Amdeberhan, V. de Angelis, A. Dixit, V. H. Moll and C. Vignat, From sequences to polynomials and back, via operator orderings, 2013.
Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
EXAMPLE
Triangle begins:
1
1,1
7,10,7
17,103,103,17
203,2948,7138,2948,203
583,20091,100286,100286,20091,583
...
MAPLE
A225694F := proc(n, k)
add((-1)^(n-k-j)*binomial(n+1, n-k-j)*orthopoly[P](n, I*(j+1/2)), j=0..n-k) ;
%/I^n/n! ;
expand(%) ;
end proc:
A225694 := proc(n, k)
A225694F(n, k) *denom(A225694F(n, 0)) ;
end proc:
seq(seq( A225694(n, k), k=0..n), n=0..10) ; # R. J. Mathar, May 23 2014
MATHEMATICA
F[n_, k_] := F[n, k] = Sum[(-1)^(n - k - j) Binomial[n + 1, n - k - j]* LegendreP[n, I(j + 1/2)], {j, 0, n - k}] /I^n/n!;
T[n_, k_] := F[n, k] LCM @@ Denominator[Table[F[n, j], {j, 0, n}]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 02 2020, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 27 2013
STATUS
approved