login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070405
a(n) = 7^n mod 13.
2
1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-6) + a(n-7).
G.f.: ( -1-6*x-3*x^2+5*x^3-4*x^4-2*x^5-2*x^6 ) / ( (x-1)*(x^2+1)*(x^4-x^2+1) ). (End)
a(n) = a(n-12). - G. C. Greubel, Mar 20 2016
MATHEMATICA
PowerMod[7, Range[0, 90], 13] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, -1, 1}, {1, 7, 10, 5, 9, 11, 12}, 100] (* Harvey P. Dale, May 20 2014 *)
PROG
(Sage) [power_mod(7, n, 13) for n in range(0, 91)] # Zerinvary Lajos, Nov 03 2009
(PARI) a(n) = lift(Mod(7, 13)^n); \\ Altug Alkan, Mar 20 2016
(Magma) [Modexp(7, n, 13): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A122577 A180732 A266551 * A377931 A010730 A225694
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved