The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072334 Decimal expansion of e^2. 30
 7, 3, 8, 9, 0, 5, 6, 0, 9, 8, 9, 3, 0, 6, 5, 0, 2, 2, 7, 2, 3, 0, 4, 2, 7, 4, 6, 0, 5, 7, 5, 0, 0, 7, 8, 1, 3, 1, 8, 0, 3, 1, 5, 5, 7, 0, 5, 5, 1, 8, 4, 7, 3, 2, 4, 0, 8, 7, 1, 2, 7, 8, 2, 2, 5, 2, 2, 5, 7, 3, 7, 9, 6, 0, 7, 9, 0, 5, 7, 7, 6, 3, 3, 8, 4, 3, 1, 2, 4, 8, 5, 0, 7, 9, 1, 2, 1, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also where x^(1/sqrt(x)) is a maximum. - Robert G. Wilson v, Oct 22 2014 REFERENCES Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.4, pages 2 and 28-29. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 John Cosgrave, e^2 is irrational. FORMULA Equals Sum_{n>=0} Sum_{k>=0} 1/(n!*k!). - Fredrik Johansson, Apr 21 2006 Equals Sum_{n>=0} 2^n/n!. - Daniel Hoyt Nov 20 2020 From Peter Bala, Jan 13 2022: (Start) e^2 = Sum_{n >= 0} 2^n/n!. Faster converging series include e^2 = 8*Sum_{n >= 0} 2^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - n + 2 and e^2 = -48*Sum_{n >= 0} 2^n/(q(n-1)*q(n)*n!), where q(n) = n^3 + 5*n - 2. e^2 = 7 + Sum_{n >= 0} 2^(n+3)/((n+2)^2*(n+3)^2*n!) and 7/e^2 = 1 - Sum_{n >= 0} (-2)^(n+1)*n^2/(n+2)!. e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/ (e^2 + 1)). Cf. A001204. (End) Equals lim_{n->oo} (Sum_{k=1..n} 1/binomial(n,k)^x)^(n^x), for all real x > 1/2 (Furdui, 2013). - Amiram Eldar, Mar 26 2022 EXAMPLE 7.389056098930650... MATHEMATICA RealDigits[E^2, 10, 100][[1]] (* Vincenzo Librandi, Apr 05 2020 *) PROG (PARI) default(realprecision, 20080); x=exp(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b072334.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009 (Magma) SetDefaultRealField(RealField(100)); Exp(1)^2; // Vincenzo Librandi, Apr 05 2020 CROSSREFS Cf. A001204 (continued fraction). Cf. A001113, A091933, A092426, A092511, A092512, A092513. Sequence in context: A019726 A011330 A093587 * A358184 A003957 A021579 Adjacent sequences: A072331 A072332 A072333 * A072335 A072336 A072337 KEYWORD nonn,cons AUTHOR N. J. A. Sloane, Jul 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)