login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of e^2.
34

%I #53 Mar 26 2022 10:16:43

%S 7,3,8,9,0,5,6,0,9,8,9,3,0,6,5,0,2,2,7,2,3,0,4,2,7,4,6,0,5,7,5,0,0,7,

%T 8,1,3,1,8,0,3,1,5,5,7,0,5,5,1,8,4,7,3,2,4,0,8,7,1,2,7,8,2,2,5,2,2,5,

%U 7,3,7,9,6,0,7,9,0,5,7,7,6,3,3,8,4,3,1,2,4,8,5,0,7,9,1,2,1,7,9

%N Decimal expansion of e^2.

%C Also where x^(1/sqrt(x)) is a maximum. - _Robert G. Wilson v_, Oct 22 2014

%D Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.4, pages 2 and 28-29.

%H Harry J. Smith, <a href="/A072334/b072334.txt">Table of n, a(n) for n = 1..20000</a>

%H John Cosgrave, <a href="https://www.johnbcosgrave.com/archive/esquared.htm">e^2 is irrational</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals Sum_{n>=0} Sum_{k>=0} 1/(n!*k!). - _Fredrik Johansson_, Apr 21 2006

%F Equals Sum_{n>=0} 2^n/n!. - _Daniel Hoyt_ Nov 20 2020

%F From _Peter Bala_, Jan 13 2022: (Start)

%F e^2 = Sum_{n >= 0} 2^n/n!. Faster converging series include

%F e^2 = 8*Sum_{n >= 0} 2^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - n + 2 and

%F e^2 = -48*Sum_{n >= 0} 2^n/(q(n-1)*q(n)*n!), where q(n) = n^3 + 5*n - 2.

%F e^2 = 7 + Sum_{n >= 0} 2^(n+3)/((n+2)^2*(n+3)^2*n!) and

%F 7/e^2 = 1 - Sum_{n >= 0} (-2)^(n+1)*n^2/(n+2)!.

%F e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/ (e^2 + 1)). Cf. A001204. (End)

%F Equals lim_{n->oo} (Sum_{k=1..n} 1/binomial(n,k)^x)^(n^x), for all real x > 1/2 (Furdui, 2013). - _Amiram Eldar_, Mar 26 2022

%e 7.389056098930650...

%t RealDigits[E^2, 10, 100][[1]] (* _Vincenzo Librandi_, Apr 05 2020 *)

%o (PARI) default(realprecision, 20080); x=exp(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b072334.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 30 2009

%o (Magma) SetDefaultRealField(RealField(100)); Exp(1)^2; // _Vincenzo Librandi_, Apr 05 2020

%Y Cf. A001204 (continued fraction).

%Y Cf. A001113, A091933, A092426, A092511, A092512, A092513.

%K nonn,cons

%O 1,1

%A _N. J. A. Sloane_, Jul 15 2002