login
A070674
Smallest m in range 2..n-1 such that m^9 == 1 mod n, or 1 if no such number exists.
1
1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 3, 9, 1, 1, 1, 7, 4, 1, 4, 1, 1, 1, 1, 3, 4, 9, 1, 1, 5, 1, 1, 1, 11, 13, 7, 5, 16, 1, 1, 25, 6, 1, 16, 1, 1, 1, 18, 1, 1, 9, 1, 7, 1, 9, 4, 1, 1, 1, 13, 5, 4, 1, 16, 1, 29, 1, 1, 11, 1, 25, 2, 7, 1, 5, 23, 55, 23, 1, 10, 1, 1, 25, 1
OFFSET
1,7
LINKS
MAPLE
a:= proc(n) local m;
for m from 2 to n-1 do
if m &^ 9 mod n = 1 then return m fi
od; 1
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 29 2014
MATHEMATICA
a[n_] := Module[{m}, For[m = 2, m <= n-1, m++, If[PowerMod[m, 9, n] == 1, Return[m]]]; 1];
Array[a, 100] (* Jean-François Alcover, Nov 18 2020 *)
PROG
(PARI) a(n) = {for (m=2, n-1, if (lift(Mod(m, n)^9) == 1, return (m)); ); return (1); } \\ Michel Marcus, Jun 29 2014
CROSSREFS
Cf. A070667.
Sequence in context: A238018 A368945 A131642 * A070668 A318407 A325807
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 08 2002
STATUS
approved