login
A228058
Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).
64
45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
OFFSET
1,1
COMMENTS
It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019
LINKS
Charles Greathouse and Eric W. Weisstein, MathWorld: Odd perfect number
Oliver Knill, The oldest open problem in mathematics, Handout for NEU Math Circle, December 2, 2007
P. P. Nielsen, Odd Perfect Numbers Have At Least Nine Distinct Prime Factors, arXiv:math/0602485 [math.NT], 2006.
FORMULA
From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)
MATHEMATICA
nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
PROG
(Haskell)
import Data.List (partition)
a228058 n = a228058_list !! (n-1)
a228058_list = filter f [1, 3 ..] where
f x = length us == 1 && not (null vs) &&
fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
where (us, vs) = partition (odd . snd) $
zip (a027748_row x) (a124010_row x)
-- Reinhard Zumkeller, Aug 14 2013
(PARI)
up_to = 1000;
isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(k<up_to, n++; if(isA228058(n), k++; v[k] = n)); (v); };
v228058 = A228058list(up_to);
A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019
CROSSREFS
Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 and also A324898 (subsequence if it does not contain any prime powers).
Sequence in context: A044232 A044613 A039528 * A351533 A074770 A348939
KEYWORD
nonn
AUTHOR
T. D. Noe, Aug 13 2013
EXTENSIONS
Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019
STATUS
approved