login
A074770
Numbers n such that tau(n) > tau(n+1), phi(n) > phi(n+1) and sigma(n) > sigma(n+1).
1
45, 117, 225, 273, 297, 345, 357, 405, 465, 513, 561, 621, 693, 705, 765, 777, 825, 837, 861, 885, 945, 1005, 1113, 1125, 1185, 1197, 1281, 1305, 1395, 1425, 1521, 1545, 1593, 1617, 1701, 1725, 1845, 1881, 1905, 1953, 1965, 2025, 2037, 2121, 2277
OFFSET
1,1
FORMULA
It seems that a(n) is asymptotic to c*n with 52 < c < 54.
EXAMPLE
tau(117) = 6 > 4 = tau(118), phi(117) = 72 > 58 = phi(118), and sigma(117) = 182 > 180 = sigma(118); hence 117 is in the sequence.
MAPLE
N:= 200: # to get the first N terms
prev:= [numtheory:-tau, numtheory:-phi, numtheory:-sigma](1):
count:= 0:
for n from 2 while count < N do
tps:= [numtheory:-tau, numtheory:-phi, numtheory:-sigma](n);
if min(prev - tps) > 0 then count:= count+1; A[count]:= n-1 fi;
prev:= tps;
od:
seq(A[i], i=1..N); # Robert Israel, Jan 09 2018
MATHEMATICA
Select[Range[1, 3000], DivisorSigma[0, #] > DivisorSigma[0, #+1] && EulerPhi[#] > EulerPhi[#+1] && DivisorSigma[1, #] > DivisorSigma[1, #+1]&] (* Vaclav Kotesovec, Feb 16 2019 *)
CROSSREFS
Sequence in context: A039528 A228058 A351533 * A348939 A370914 A343209
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 07 2002
STATUS
approved