login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325319
a(n) = -A325313(A228058(n)).
8
21, 61, 81, 197, 141, 241, 181, 201, 381, 317, 261, 301, 533, 525, 361, 545, 441, 689, 761, 481, 501, 697, 541, 561, 773, 997, 681, 1001, 741, 1305, 781, 1181, 1337, 1153, 861, 1405, 901, 961, 981, 1685, 1509, 1381, 1673, 1841, 1141, 1161, 1201, 2013, 1685, 1281, 2229, 1341, 1837, 1381, 1913, 1401, 2165, 1461, 2501, 2065, 1561, 2141
OFFSET
1,1
COMMENTS
All terms are of the form 4k+1, A016813.
If a(n) is never equal to A325320(n), then there are no odd perfect numbers.
LINKS
FORMULA
a(n) = -A325313(A228058(n)) = A228058(n) - A048250(A228058(n)).
a(n) = A325320(n) + A325379(n) = A325378(n) - A325320(n).
PROG
(PARI)
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A325313(n) = (A048250(n) - n);
isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
k=0; n=0; while(k<100, n++; if(isA228058(n), k++; print1(-A325313(n), ", ")));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 22 2019
STATUS
approved