OFFSET
1,1
COMMENTS
Among the terms of this sequence, there are (not exhaustive):
- the even palindromes >= 8,
- the palindromes >= 55 that end with 5,
- the palindromes >= 22 with an even number of digits for they are divisible by 11, and also,
- the palindromes that are Brazilian primes such as 7, 757, 30103, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
141 = (33)_46 is a palindrome that is Brazilian.
MATHEMATICA
brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length @ Union[IntegerDigits[n, b]] > 1, b++]; b < n - 1]; Select[Range[1000], PalindromeQ[#] && brazQ[#] &] (* Amiram Eldar, Apr 14 2021 *)
PROG
(PARI) isb(n) = for(b=2, n-2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
isp(n) = my(d=digits(n)); d == Vecrev(d); \\ A002113
isok(n) = isb(n) && isp(n); \\ Michel Marcus, Apr 22 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Apr 20 2019
STATUS
approved