login
A325316
a(n) = A048250(n) OR A162296(n), where OR is the bitwise-OR, A003986.
3
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 31, 20, 26, 32, 36, 24, 60, 31, 42, 36, 56, 30, 72, 32, 63, 48, 54, 48, 79, 38, 60, 56, 90, 42, 96, 44, 52, 62, 72, 48, 124, 57, 91, 72, 58, 54, 108, 72, 120, 80, 90, 60, 104, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 191, 74, 114, 124, 124, 96, 168, 80
OFFSET
1,2
FORMULA
a(n) = A003986(A048250(n), A162296(n)).
a(n) = A000203(n) - A325318(n) = A325317(n) + A325318(n).
MATHEMATICA
Array[BitOr @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 79] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI)
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
A325316(n) = bitor(A048250(n), A162296(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 21 2019
STATUS
approved