login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162296
Sum of divisors of n that have a square factor.
40
0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 16, 0, 0, 0, 28, 0, 27, 0, 24, 0, 0, 0, 48, 25, 0, 36, 32, 0, 0, 0, 60, 0, 0, 0, 79, 0, 0, 0, 72, 0, 0, 0, 48, 54, 0, 0, 112, 49, 75, 0, 56, 0, 108, 0, 96, 0, 0, 0, 96, 0, 0, 72, 124, 0, 0, 0, 72, 0, 0, 0, 183, 0, 0, 100, 80, 0, 0, 0, 168, 117, 0, 0, 128, 0, 0
OFFSET
1,4
COMMENTS
Note that 1 does not have a square factor. - Antti Karttunen, Nov 20 2017
FORMULA
a(n) + A048250(n) = A000203(n). - Antti Karttunen, Nov 20 2017
From Amiram Eldar, Oct 01 2022: (Start)
a(n) = 0 iff n is squarefree (A005117).
a(n) = n iff n is a square of a prime (A001248).
Sum_{k=1..n} a(k) ~ (Pi^2/12 - 1/2) * n^2. (End)
EXAMPLE
a(8) = 12 = 4 + 8.
MATHEMATICA
Array[DivisorSum[#, # &, # (1 - MoebiusMu[#]^2) == # &] &, 86] (* Michael De Vlieger, Nov 20 2017 *)
a[1]=0; a[n_] := DivisorSigma[1, n] - Times@@(1+FactorInteger[n][[;; , 1]]); Array[a, 86] (* Amiram Eldar, Dec 20 2018 *)
PROG
(PARI) a(n)=sumdiv(n, d, d*(1-moebius(d)^2)); v=vector(300, n, a(n))
(Python)
from math import prod
from sympy import factorint
def A162296(n):
f = factorint(n)
return prod((p**(e+1)-1)//(p-1) for p, e in f.items())-prod(p+1 for p in f) # Chai Wah Wu, Apr 20 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joerg Arndt, Jun 30 2009
STATUS
approved