login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284117
Sum of proper prime power divisors of n.
3
0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 28, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 60, 0, 0, 0, 13, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 28, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 124, 0, 0, 0, 4, 0, 0, 0, 21, 0, 0, 25, 4, 0, 0, 0, 28, 117, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 60, 0, 49, 9, 29
OFFSET
1,4
FORMULA
G.f.: Sum_{p prime, k>=2} p^k*x^(p^k)/(1 - x^(p^k)).
a(n) = Sum_{d|n, d = p^k, p prime, k >= 2} d.
a(n) = 0 if n is a squarefree (A005117).
Additive with a(p^e) = (p^(e+1)-1)/(p-1) - p - 1. - Amiram Eldar, Jul 24 2024
EXAMPLE
a(8) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 2 are proper prime powers {4, 8} therefore 4 + 8 = 12.
MAPLE
f:= n -> add(t[1]*(t[1]^t[2]-t[1])/(t[1]-1), t=ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Mar 31 2017
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Total[Select[Divisors[n], PrimePowerQ[#1] && PrimeOmega[#1] > 1 &]], {n, 100}]
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
PROG
(PARI) concat([0, 0, 0], Vec(sum(k=1, 100, (isprimepower(k) && bigomega(k)>1) * k * x^k/(1 - x^k)) + O(x^101))) \\ Indranil Ghosh, Mar 21 2017
(PARI) a(n) = sumdiv(n, d, d*(isprimepower(d) && !isprime(d))); \\ Michel Marcus, Apr 01 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Mar 20 2017
STATUS
approved