login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of proper prime power divisors of n.
3

%I #22 Jul 24 2024 21:31:08

%S 0,0,0,4,0,0,0,12,9,0,0,4,0,0,0,28,0,9,0,4,0,0,0,12,25,0,36,4,0,0,0,

%T 60,0,0,0,13,0,0,0,12,0,0,0,4,9,0,0,28,49,25,0,4,0,36,0,12,0,0,0,4,0,

%U 0,9,124,0,0,0,4,0,0,0,21,0,0,25,4,0,0,0,28,117,0,0,4,0,0,0,12,0,9,0,4,0,0,0,60,0,49,9,29

%N Sum of proper prime power divisors of n.

%H Robert Israel, <a href="/A284117/b284117.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.

%F G.f.: Sum_{p prime, k>=2} p^k*x^(p^k)/(1 - x^(p^k)).

%F a(n) = Sum_{d|n, d = p^k, p prime, k >= 2} d.

%F a(n) = 0 if n is a squarefree (A005117).

%F Additive with a(p^e) = (p^(e+1)-1)/(p-1) - p - 1. - _Amiram Eldar_, Jul 24 2024

%e a(8) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 2 are proper prime powers {4, 8} therefore 4 + 8 = 12.

%p f:= n -> add(t[1]*(t[1]^t[2]-t[1])/(t[1]-1), t=ifactors(n)[2]):

%p map(f, [$1..100]); # _Robert Israel_, Mar 31 2017

%t nmax = 100; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]

%t Table[Total[Select[Divisors[n], PrimePowerQ[#1] && PrimeOmega[#1] > 1 &]], {n, 100}]

%t f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jul 24 2024 *)

%o (PARI) concat([0, 0, 0], Vec(sum(k=1, 100, (isprimepower(k) && bigomega(k)>1) * k * x^k/(1 - x^k)) + O(x^101))) \\ _Indranil Ghosh_, Mar 21 2017

%o (PARI) a(n) = sumdiv(n, d, d*(isprimepower(d) && !isprime(d))); \\ _Michel Marcus_, Apr 01 2017

%Y Cf. A001414, A008472, A023888, A023889, A046660, A246547.

%K nonn,easy

%O 1,4

%A _Ilya Gutkovskiy_, Mar 20 2017