login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284114
Number of partitions of n such that Omega(n) (= number of prime divisors of n counted with multiplicity) equals the sum of Omega of all parts; Omega = A001222.
1
1, 1, 1, 2, 2, 3, 5, 4, 7, 9, 12, 5, 22, 6, 17, 19, 55, 7, 50, 8, 60, 28, 32, 9, 166, 37, 41, 113, 122, 10, 137, 11, 631, 51, 56, 57, 475, 12, 64, 66, 620, 13, 258, 14, 282, 301, 83, 15, 2229, 90, 359, 95, 394, 16, 1302, 105, 1435, 109, 114, 17, 1708, 18, 125
OFFSET
0,4
FORMULA
a(p) = A000720(p) for prime p.
EXAMPLE
a(5) = 3: [2,1,1,1], [3,1,1], [5].
a(6) = 5: [2,2,1,1], [3,2,1], [3,3], [4,1,1], [6].
a(7) = 4: [2,1,1,1,1,1], [3,1,1,1,1], [5,1,1], [7].
a(8) = 7: [2,2,2,1,1], [3,2,2,1], [3,3,2], [4,2,1,1], [4,3,1], [6,2], [8].
a(9) = 9: [2,2,1,1,1,1,1], [3,2,1,1,1,1], [3,3,1,1,1], [4,1,1,1,1,1], [5,2,1,1], [5,3,1], [6,1,1,1], [7,2], [9].
a(10) = 12: [2,2,1,1,1,1,1,1], [3,2,1,1,1,1,1], [3,3,1,1,1,1], [4,1,1,1,1,1,1], [5,2,1,1,1], [5,3,1,1], [5,5], [6,1,1,1,1], [7,2,1], [7,3], [9,1], [10].
MAPLE
with(numtheory):
b:= proc(n, i, m) option remember; `if`(n=0 or i=1,
`if`(m=0, 1, 0), `if`(m<0, 0, b(n, i-1, m)+
`if`(i>n, 0, b(n-i, i, m-bigomega(i)))))
end:
a:= n-> b(n$2, bigomega(n)):
seq(a(n), n=0..80);
MATHEMATICA
b[n_, i_, m_] := b[n, i, m] = If[n == 0 || i == 1, If[m == 0, 1, 0], If[m < 0, 0, b[n, i-1, m] + If[i>n, 0, b[n-i, i, m - PrimeOmega[i]]]]];
a[0] = 1; a[n_] := b[n, n, PrimeOmega[n]];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
PROG
(PARI) b(n, i, m) = if(n==0 || i==1, if(m==0, 1, 0), if(m<0, 0, b(n, i - 1, m) + if(i>n, 0, b(n - i, i, m - bigomega(i)))));
a(n) = if(n<1, 1, b(n, n, bigomega(n)));
for(n=0, 80, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 25 2017, translated from Mathematica
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 20 2017
STATUS
approved