login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of divisors of n that have a square factor.
40

%I #33 Apr 20 2023 14:55:16

%S 0,0,0,4,0,0,0,12,9,0,0,16,0,0,0,28,0,27,0,24,0,0,0,48,25,0,36,32,0,0,

%T 0,60,0,0,0,79,0,0,0,72,0,0,0,48,54,0,0,112,49,75,0,56,0,108,0,96,0,0,

%U 0,96,0,0,72,124,0,0,0,72,0,0,0,183,0,0,100,80,0,0,0,168,117,0,0,128,0,0

%N Sum of divisors of n that have a square factor.

%C Note that 1 does not have a square factor. - _Antti Karttunen_, Nov 20 2017

%H Antti Karttunen, <a href="/A162296/b162296.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.

%F a(n) + A048250(n) = A000203(n). - _Antti Karttunen_, Nov 20 2017

%F From _Amiram Eldar_, Oct 01 2022: (Start)

%F a(n) = 0 iff n is squarefree (A005117).

%F a(n) = n iff n is a square of a prime (A001248).

%F Sum_{k=1..n} a(k) ~ (Pi^2/12 - 1/2) * n^2. (End)

%e a(8) = 12 = 4 + 8.

%t Array[DivisorSum[#, # &, # (1 - MoebiusMu[#]^2) == # &] &, 86] (* _Michael De Vlieger_, Nov 20 2017 *)

%t a[1]=0; a[n_] := DivisorSigma[1, n] - Times@@(1+FactorInteger[n][[;; , 1]]); Array[a,86] (* _Amiram Eldar_, Dec 20 2018 *)

%o (PARI) a(n)=sumdiv(n,d,d*(1-moebius(d)^2)); v=vector(300,n,a(n))

%o (Python)

%o from math import prod

%o from sympy import factorint

%o def A162296(n):

%o f = factorint(n)

%o return prod((p**(e+1)-1)//(p-1) for p, e in f.items())-prod(p+1 for p in f) # _Chai Wah Wu_, Apr 20 2023

%Y Cf. A000203, A001248, A005117, A013929, A048250.

%K easy,nonn

%O 1,4

%A _Joerg Arndt_, Jun 30 2009