|
|
A162294
|
|
Numbers k such that k^3-k^2-k-1 is prime.
|
|
4
|
|
|
4, 6, 8, 12, 16, 22, 28, 34, 44, 50, 54, 56, 58, 76, 78, 88, 110, 112, 118, 134, 138, 156, 162, 166, 168, 170, 188, 190, 200, 204, 208, 210, 226, 230, 236, 244, 250, 268, 274, 302, 310, 314, 322, 324, 340, 344, 356, 364, 368, 378, 382, 390, 398, 400, 420, 424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
k^3-k^2-k-1 = A162295(n), where k=a(n).
Sum_{i=1..n} a(i) = Sum_{i=1..n} i * ( pi(i^3 - i^2 - i - 1) - pi(i^3 - i^2 - i - 2) ). - Wesley Ivan Hurt, May 24 2013
|
|
EXAMPLE
|
k=4 is in the sequence because 4^3-4^2-4-1=43 is prime.
k=6 is in the sequence because 6^3-6^2-6-1=173 is prime.
|
|
MATHEMATICA
|
lst={}; Do[p=n^3-n^2-n-1; If[PrimeQ[p], AppendTo[lst, n]], {n, 2, 6!}]; lst
|
|
CROSSREFS
|
Cf. A087908, A111501, A162291, A162293, A162295 (corresponding primes).
Sequence in context: A062554 A020225 A310663 * A344994 A211026 A090989
Adjacent sequences: A162291 A162292 A162293 * A162295 A162296 A162297
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jun 30 2009
|
|
EXTENSIONS
|
Edited by R. J. Mathar, Jul 02 2009
|
|
STATUS
|
approved
|
|
|
|