|
|
A162293
|
|
Numbers k such that k^2*(k-1)-1 is prime.
|
|
6
|
|
|
2, 3, 4, 6, 7, 9, 12, 13, 18, 21, 22, 30, 33, 46, 48, 57, 58, 61, 66, 67, 75, 79, 85, 87, 90, 94, 96, 99, 100, 106, 111, 114, 117, 118, 120, 121, 127, 129, 133, 138, 144, 153, 160, 162, 171, 174, 175, 186, 187, 195, 199, 202, 204, 220, 222, 223, 231, 243, 246, 252
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n)^2 * ( a(n)-1 )-1 = A162291(n).
|
|
EXAMPLE
|
a(1)=2 since 2^3-2^2-1=3 is prime.
a(2)=3 since 3^3-3^2-1=17 is prime.
a(3)=4 since 4^3-4^2-1=47 is prime.
|
|
MATHEMATICA
|
lst={}; Do[s=n^3-n^2; If[PrimeQ[s-1], AppendTo[lst, n]], {n, 6!}]; lst
|
|
CROSSREFS
|
Cf. A087908, A162291 (corresponding primes), A111501.
Sequence in context: A304206 A243498 A156287 * A233459 A145803 A018629
Adjacent sequences: A162290 A162291 A162292 * A162294 A162295 A162296
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jun 30 2009
|
|
EXTENSIONS
|
Comments moved to the examples by R. J. Mathar, Sep 11 2009
|
|
STATUS
|
approved
|
|
|
|