

A162293


Numbers k such that k^2*(k1)1 is prime.


6



2, 3, 4, 6, 7, 9, 12, 13, 18, 21, 22, 30, 33, 46, 48, 57, 58, 61, 66, 67, 75, 79, 85, 87, 90, 94, 96, 99, 100, 106, 111, 114, 117, 118, 120, 121, 127, 129, 133, 138, 144, 153, 160, 162, 171, 174, 175, 186, 187, 195, 199, 202, 204, 220, 222, 223, 231, 243, 246, 252
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000


FORMULA

a(n)^2 * ( a(n)1 )1 = A162291(n).


EXAMPLE

a(1)=2 since 2^32^21=3 is prime.
a(2)=3 since 3^33^21=17 is prime.
a(3)=4 since 4^34^21=47 is prime.


MATHEMATICA

lst={}; Do[s=n^3n^2; If[PrimeQ[s1], AppendTo[lst, n]], {n, 6!}]; lst


CROSSREFS

Cf. A087908, A162291 (corresponding primes), A111501.
Sequence in context: A304206 A243498 A156287 * A233459 A145803 A018629
Adjacent sequences: A162290 A162291 A162292 * A162294 A162295 A162296


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Jun 30 2009


EXTENSIONS

Comments moved to the examples by R. J. Mathar, Sep 11 2009


STATUS

approved



