|
|
A223347
|
|
3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
|
|
1
|
|
|
28, 236, 2280, 20836, 202264, 1851020, 17970056, 164457412, 1596586328, 14611562156, 141852049992, 1298194798372, 12603142057880, 115340831992268, 1119752515193608, 10247697449986948, 99486754138704856, 910478112673392620
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 91*a(n-2) - 192*a(n-4) + 64*a(n-6).
Empirical g.f.: 4*x*(7 + 59*x - 67*x^2 - 160*x^3 + 40*x^4 + 64*x^5) / (1 - 91*x^2 + 192*x^4 - 64*x^6). - Colin Barker, Aug 19 2018
|
|
EXAMPLE
|
Some solutions for n=3:
..1..4..1....1..4..2....2..0..2....0..2..4....5..2..0....4..1..0....4..2..5
..0..2..4....0..2..0....4..1..0....1..4..1....2..5..2....1..4..1....2..5..2
..1..0..1....2..4..1....2..4..1....0..1..3....0..2..4....4..1..0....4..2..5
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|