OFFSET
0,3
COMMENTS
a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
B. A. Huberman, T. H. Hogg, & N. J. A. Sloane, Correspondence, 1985
Pierpaolo Natalini, Paolo E. Ricci, Integer Sequences Connected with Extensions of the Bell Polynomials, Journal of Integer Sequences, 2017, Vol. 20, #17.10.2.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
a(n) = -A094952(-n) for all n in Z. - Michael Somos, Jan 23 2014
EXAMPLE
G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ...
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 15, 60}, 50] (* Vincenzo Librandi, Jun 18 2012 *)
a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* Michael Somos, Jan 23 2014 */
(Magma) I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi Jun 18 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Michael Somos, Oct 29 2002
STATUS
approved